Photoacoustic Tomography

Vevo_2100_System

A novel scanning technique that combines optics with ultrasound could provide detailed images at greater depths

A new technique called photoacoustic (or optoacoustic) tomography, which marries optics with ultrasonic imaging, should in theory be able to provide detailed scans comparable to those produced by magnetic-resonance imaging (MRI) or X-ray computerised tomography (CT), but with the cost and convenience of a hand-held scanner. Since the technology can operate at depths of several centimetres, its champions hope that within a few years it will be able to help guide biopsy needles deep within tissue, assist with gastrointestinal endoscopies and measure oxygen levels in vascular and lymph nodes, thereby helping to determine whether tumours are malignant or not. There is even scope to use photoacoustic imaging to monitor brain activity and gene expression within cells.

The field of contrast agents is central to future developments in microultrasound. In particular, researchers at the University of Toronto are studying the use of microbubble (< 3 micron dia.) and sub-micron particle contrast agents at high frequencies and applying these to models of cardiovascular disease and cancer[5]. They have recently demonstrated Molecular Imaging approaches based on targeted microbubble contrast agents and believe these approaches will also make an important contribution to bioresearch.

To create a photoacoustic image, pulses of laser light are shone onto the tissue being scanned. This heats the tissue by a tiny amount—just a few thousandths of a degree—that is perfectly safe, but is enough to cause the cells to expand and contract in response. As they do so, they emit sound waves in the ultrasonic range. An array of sensors placed on the skin picks up these waves, and a computer then uses a process of triangulation to turn the ultrasonic signals into a two- or three-dimensional image of what lies beneath.

The technique works at far greater depths (up to seven centimetres) than other optical-imaging techniques such as confocal microscopy or optical-coherence tomography, which penetrate to depths of only about a millimetre. And because the degree to which a particular wavelength of light is absorbed depends on the type of tissue and, in the case of blood, on whether it is oxygenated or deoxygenated, there is, in effect, a natural contrast agent. This makes the technique superior to ultrasound alone when it comes to picking out detailed features such as veins.

MRI and CT scans are also capable of delivering this kind of detail. But they usually require contrast dyes to be injected into the bloodstream, says Lihong Wang, a photoacoustic researcher at Washington University in St Louis, Missouri. CT scans also involve potentially harmful ionising radiation. And MRI and CT scans are very expensive, using machines that cost millions of dollars and require dedicated staff to operate them.

Advertisements

Leave a comment

January 10, 2013 · 6:00 pm

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s